Monatshefte für Chemie Chemical Monthly Printed in Austria

## The *Mitsunobu* Inversion Reaction of Sterically Hindered 17-Hydroxy Steroids

# Pál Tapolcsányi, János Wölfling, Erzsébet Mernyák, and Gyula Schneider\*

Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary

Received March 4, 2004; accepted March 29, 2004 Published online June 30, 2004 © Springer-Verlag 2004

**Summary.** The *Mitsunobu* inversion reaction of 3-methoxyestra-1,3,5(10)-trien- $17\beta$ -ol is dramatically influenced by the acidic component. There appears to be a relationship between the dissociation constant of the electron-withdrawing substituent on the aryl acid and the overall effectiveness of the reaction, with more acidic species generally providing a higher yield of inverted product.

Keywords. Steroids; Estrone derivatives; Mitsunobu reaction; Carboxylic acids; Isomers.

## Introduction

The *Mitsunobu* reaction is widely employed for the inversion of configuration in secondary alcohol derivatives [1, 2]. In general, this method proves efficacious for a variety of substrates, furnishing useful yields of inverted products under mild, essentially neutral reaction conditions. One of the most frequent goals of the application of the *Mitsunobu* reaction is the epimerization of optically active secondary alcohols, and most of the published papers have reported and discussed such transformations [3]. In these procedures, the optically active alcohol is reacted with different carboxylic acids under *Mitsunobu* conditions. In most cases, the acid strength is not the determining factor in the reaction, but for sterically hindered alcohols, application of a strong acid is recommended [4]. Early references to this observation included primary and secondary substrates such as nucleosides, carbohydrates, and alkaloids [5-7]. 4-Nitrobenzoic acid has been shown to be a particularly effective coupling reagent for sterically encumbered alcohols [8, 9], a finding which has led to practical modifications of the *Mitsunobu* reaction

<sup>\*</sup> Corresponding author. E-mail: schneider@chem.u-szeged.hu

Dedicated to Professor Sándor Antus on the occasion of his 60th birthday

[10, 11]. Despite these observations, the origins of this interesting phenomenon have received little attention [12].

Dodge et al. have recently investigated the role of the carboxylic acid in the *Mitsunobu* inversion of menthol [13], and other sterically hindered hydroxyl functions on different sterane skeletons [14]. They found that, with different acids as nucleophilic reagents, the relatively acidic 4-nitrobenzoic acid proved to be the most convenient coupling partner. We have studied the *Mitsunobu* inversion of the  $17\beta$ - and  $17\alpha$ -hydroxy groups of 3-methoxyestra-1,3,5(10)-trien-17-ol (1, 2), using different carboxylic acids and solvents. Moreover, we have investigated the reactions of  $16\beta$ -methyl- and  $16\alpha$ -methyl-3-methoxyestra-1,3,5(10)-trien- $17\beta$ -ol (4, 5) in order to establish whether the *Mitsunobu* reaction is suitable for the inversion of strongly hindered alcohols which have two adjacent substituents.

## **Results and Discussion**

Since literature reveals that both the carboxylic acid and the solvent used for the Mitsunobu inversion process exert a considerable influence on the outcome of the reaction, we performed the *Mitsunobu* inversion of 3-methoxyestra-1,3,5(10)trien-17 $\beta$ -ol (1) with various carboxylic acids in three different solvents: toluene, chlorobenzene, and hexamethylphosphorus triamide (HMPT). The results demonstrated that the more acidic aromatic carboxylic acids gave better yields in the Mitsunobu reaction. The traditionally used relatively weak benzoic acid ( $pK_a =$ 4.16) is one of the least attractive coupling partners. 4-Nitrobenzoic acid ( $pK_a =$ 3.41) gave a similar result to that reported by Dodge and Lugar [14]. Despite being more acidic, 3,5-dinitrobenzoic acid  $(pK_a = 2.82)$  led to a yield similar to that with 4-nitrobenzoic acid. The best result was achieved with 2,4-dinitrobenzoic acid, which has the highest dissociation constant ( $pK_a = 1.42$ ). Among the solvents, toluene and chlorobenzene proved convenient. HMPT is suitable for the S<sub>N</sub>2 exchange reactions of steroid-oxyphosphonium species with nucleophilic aryl acids. In the present systems, however, HMPT furnished only lower yields and the work-up of the reaction mixture was more difficult, too. In each case, besides the desired product we isolated an unsaturated side-product, 3-methoxy- $17\beta$ -methylestra-1,3,5(10),13-tetraene (3). Evidence of the structure of compound 3 was provided by the exchange reaction of  $17\alpha$ -chloro-3-methoxyestra-1,3,5(10)-triene with sodium acetate [15] and by the acetolysis of  $17\beta$ -p-tolylsulfonyloxy-3methoxyestra-1,3,5(10)-triene with potassium acetate [16]. The formation of this compound can be explained by the Wagner-Meerwein rearrangement of steroidoxyphosphonium species in parallel with the nucleophilic exchange reaction. The first Wagner-Meerwein rearrangement under Mitsunobu reaction conditions had been found for the rigid bicyclo[3.1.1]heptanol system by Evans et al. [17] (Scheme 1).

To compare the reactivities of the  $17\beta$ - and  $17\alpha$ -hydroxy groups, we carried out the *Mitsunobu* reaction of 3-methoxyestra-1,3,5(10)-trien- $17\alpha$ -ol (2) with 4-nitrobenzoic acid in toluene and in chlorobenzene. 3-Methoxyestra-1,3,5(10)-trien- $17\beta$ yl (4-nitrobenzoate) (1a) was obtained in only 10% and 12% yield. The main product in both cases was 3. The *pseudo axial*  $17\alpha$ -hydroxy group exhibits low



reactivity, in agreement with the general behaviour of the *axial* hydroxy group of steroids [3].

We performed the *Mitsunobu* inversion of the very encumbered  $16\beta$ -methyl and  $16\alpha$ -methyl-3-methoxyestra-1,3,5(10)-trien- $17\beta$ -ols (**4**, **5**). The two methyl functionalities cause strong steric hindrance about the adjacent alcohol moiety. For compounds unsubstituted at position C-16 (**1**, **2**), the most acidic 2,4dinitrobenzoic acid has proved to be the most effective. In the case of  $16\beta$ methyl-3-methoxyestra-1,3,5(10)-trien- $17\beta$ -ol (**4**), 2,4-dinitrobenzoic acid and 4-nitrobenzoic acid gave similar yields. For the *Mitsunobu* reaction we chose the less bulky 4-nitrobenzoic acid, which resulted in 17%  $16\beta$ -methyl-3-methoxyestra-1,3,5(10)-trien- $17\alpha$ -yl (4-nitrobenzoate) (**6a**), 15% 16-methyl-3-methoxyestra-1,3,5(10),16-tetraene (**7**), and 65% unreacted starting compound **4**. A surprisingly high yield was achieved in the *Mitsunobu* inversion of  $16\alpha$ -methyl-3-methoxyestra-1,3,5(10)-trien- $17\beta$ -ol (**5**).  $16\alpha$ -Methyl-3-methoxyestra-1,3,5(10)-trien- $17\alpha$ -yl (4nitrobenzoate) (**8a**) was obtained in 60%, **7** in 5%, and unreacted **5** in 31% yield (Scheme 2).

The great difference in reactivity of the two isomers **4** and **5** can be explained by steric reasons. The formation of the oxyphosphonium salt at the  $\beta$ -hydroxy group is probably much more hindered by the two adjacent methyl groups, also in the  $\beta$ -position, than in the case of **5**, where the methyl group is situated far from the reaction center. The formation of 16-methyl-3-methoxyestra-1,3,5(10),16-tetraene (7) can easily be explained by the elimination of the oxyphosphonium species preceding the last step of the *Mitsunobu* reaction.



Scheme 2

## **Experimental**

Melting points were determined on a *Kofler* block. Optical rotations were measured in chloroform (c = 1) on a Polamat-A (Zeiss, Jena) polarimeter at 23°C, and  $[\alpha]_D$  values are given in  $10^{-1}$  °cm<sup>2</sup>g<sup>-1</sup>. NMR spectra were recorded on a Bruker AM 400 instrument. Chemical shifts ( $\delta$ ) are given in ppm, and coupling constants (*J*) in Hz. For the determination of multiplicities, the J-MOD pulse sequence was used. Elemental analysis data were determined with a Perkin-Elmer CHN analyser model 2400. For all new compounds satisfactory elemental analyses were obtained. Thin-layer chromatography: silica gel 60, layer thickness 0.2 mm (Merck); solvent system (ss): (A) chloroform, (B) ethyl acetate:chloroform (5:95, v/v); detection with iodine or UV (365 nm) or by spraying with 50% phosphoric acid and heating at 100–120°C for 10 min. Flash chromatography: silica gel 60, 40–63 µm.

#### General Procedure

3-Methoxyestra-1,3,5(10)-trien-17-ol (1, 2; 1 mmol, 286 mg) or 3-methoxy-16-methylestra-1,3,5(10)-trien-17-ol (4, 5; 1 mmol, 300 mg), 656 mg of triphenylphosphine (2.5 mmol), and 305 mg of benzoic acid (2.5 mmol) or substituted benzoic acid (2.5 mmol) were suspended in 15 cm<sup>3</sup> of dry toluene in a  $50 \text{ cm}^3$ , three-necked, round-bottomed flask equipped with a thermometer, a dropping funnel, and a reflux condenser with a CaCl<sub>2</sub>-tube. The flask was placed on a heating magnetic stirrer and stirred for 2 min, and 436 mg of diethyl azodicarboxylate (2.5 mmol) were then added dropwise at room temperature. The suspension cleared to give a yellow-orange solution and became slightly warm. The reaction mixture was kept at 80°C for 1.5 h, the solvent was then removed under vacuum, and the residue was subjected to chromatography and eluted with CHCl<sub>3</sub>. With *HMPT* as solvent, the work-up

was as follows: at the end of the reaction, the reaction mixture was poured into water and allowed to stand overnight. A dense oil formed, which was then separated from  $H_2O$  and dissolved in CHCl<sub>3</sub>. After drying and evaporation of the solvent, the residue was chromatographed on a silica gel column with CHCl<sub>3</sub>.

#### Mitsunobu Esterification of 1 with Benzoic Acid

In toluene: A mixture of 286 mg of 1 (1 mmol) and 305 mg of benzoic acid (2.5 mmol) was treated in 15 cm<sup>3</sup> of toluene as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>. The separation resulted in 83 mg of 3 (31%), mp 108-110°C (Ref. [15] 107–109°C),  $R_{\rm f} = 0.85$  (ss A);  $[\alpha]_{\rm D}^{20} = -54 \, 10^{-1} \, {}^{\circ} {\rm cm}^2 {\rm g}^{-1}$  (c = 1, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3, Me_4\text{Si}): \delta = 1.01 \text{ (d, } J = 7.0 \text{ Hz}, 17 \text{-CH}_3), 1.30 - 2.65 \text{ (overlapping multiplets, 13H)}.$ 2.90 (m, 6-H<sub>2</sub>), 3.78 (s, 3-OCH<sub>3</sub>), 6.66 (d, J = 2.6 Hz, 4-H), 6.72 (dd, J = 8.6, 2.6 Hz, 2-H), 7.26 (d, J = 8.6, 2.8 Hz, 2-H), 7.26 (d, J = 8.6, 2.8 Hz, 2-H), 7.26 (d, J = 8.6, 2.8 Hz, 2-Hz, 2-Hz, 2-H), 7.26 (d, J = 8.6, 2.8 Hz, 2-Hz, 2 J = 8.6 Hz, 1-H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>,  $Me_4$ Si):  $\delta = 19.5$  (17-CH<sub>3</sub>), 24.1, 26.9, 27.2, 30.1, 31.3, 32.1, 39.8 (C-8), 41.3 (C-9), 41.7 (C-17), 55.2 (3-OCH<sub>3</sub>), 111.2 (C-2), 113.9 (C-4), 125.9 (C-1), 133.0 (C-10), 136.9 (C-13), 138.3 (C-14), 138.9 (C-5), 157.5 (C-3) ppm. Continued elution resulted in 148 mg of **2a** (38%), mp 98–101°C,  $R_{\rm f} = 0.60$  (ss A);  $[\alpha]_{\rm D}^{20} = -1710^{-1} \,^{\circ}{\rm cm}^2 \,^{-1}{\rm g}^{-1}$  (c = 1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $Me_4$ Si):  $\delta = 0.86$  (s, 18-H<sub>3</sub>), 1.30–2.40 (overlapping multiplets, 13H). 2.87 (m, 6-H<sub>2</sub>), 3.77 (s, 3-OCH<sub>3</sub>), 5.11 (d, J = 6.0 Hz, 17-H), 6.64 (d, J = 2.6 Hz, 4-H), 6.71 (dd, J = 8.6, 2.6 Hz, 2-H), 7.20 (d, J = 8.6 Hz, 1-H), 7.45 (m, 3'- and 5'-H), 7.55 (t, J = 7.3 Hz, 4'-H), 8.06 (d, J = 7.9 Hz, 2'- and 6'-H) ppm; <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>,  $Me_4$ Si):  $\delta = 16.8$  (C-18), 24.5, 26.2, 28.1, 29.9, 30.3, 32.2, 39.1 (C-8), 43.7 (C-9), 45.4 (C-13), 49.5 (C-14), 55.2 (3-OCH<sub>3</sub>), 82.6 (C-17), 111.5 (C-2), 113.8 (C-4), 126.4 (C-1), 128.3 (2C, C-3' and C-5'), 129.5 (2C, C-2' and C-6'), 130.9 (C-1'), 132.6 (C-10), 132.7 (C-4'), 137.9 (C-5), 157.5 (C-3), 166.1 (C=O) ppm. Further elution yielded 72 mg of unreacted 1 (25%).

In chlorobenzene: A mixture of 286 mg of 1 (1 mmol) and 305 mg of benzoic acid (2.5 mmol) was treated in 15 cm<sup>3</sup> of chlorobenzene as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>. The separation resulted in 94 mg of **3** (35%), 117 mg of **2a** (30%), and 92 mg of **1** (32%).

In *HMPT*: A mixture of 286 mg of **1** (1 mmol) and 305 mg of benzoic acid (2.5 mmol) was treated in 15 cm<sup>3</sup> of *HMPT* as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>. The separation resulted in 32 mg of **3** (12%), 141 mg of **2a** (36%), and 137 mg of **1** (48%).

#### Mitsunobu Esterification of 1 with 4-Nitrobenzoic Acid

In toluene: A mixture of 286 mg of **1** (1 mmol) and 418 mg of 4-nitrobenzoic acid (2.5 mmol) was treated in 15 cm<sup>3</sup> of toluene as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>. The separation resulted in 16 mg of **3** (6%). Continued elution resulted in 357 mg of **2b** (82%), mp 154–155°C,  $R_f$ =0.55 (ss A);  $[\alpha]_D^{20} = -31 \, 10^{-1} \,^{\circ}\text{cm}^2 \,^2\text{g}^{-1}$  (*c* = 1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, *Me*<sub>4</sub>Si):  $\delta$  = 0.88 (s, 18-H<sub>3</sub>), 1.35–1.85 (overlapping multiplets, 8H), 1.95 (m, 2H), 2.38 (m, 3H), 2.88 (m, 6-H<sub>2</sub>), 3.78 (s, 3-OCH<sub>3</sub>), 5.15 (d, *J* = 6.1 Hz, 17-H), 6.64 (d, *J* = 2.7 Hz, 4-H), 6.71 (dd, *J* = 8.6, 2.7 Hz, 2-H), 7.20 (d, *J* = 8.6 Hz, 1-H), 8.22 (d, *J* = 8.8 Hz, 2'- and 6'-H), 8.30 (d, *J* = 8.8 Hz, 3'- and 5'-H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, *Me*<sub>4</sub>Si):  $\delta$  = 16.8 (C-18), 24.4, 26.1, 28.1, 29.9, 30.2, 32.2, 39.1 (C-8), 43.7 (C-9), 45.5 (C-13), 49.6 (C-14), 55.2 (3-OCH<sub>3</sub>), 83.9 (C-17), 111.5 (C-2), 113.8 (C-4), 123.5 (2C, C-3' and C-5'), 126.3 (C-1), 130.6 (2C, C-2' and C-6'), 132.3 (C-10), 136.2 (C-1'), 137.9 (C-5), 150.5 (C-4'), 157.5 (C-3), 164.2 (C=O) ppm. Further elution yielded 28 mg of unreacted **1** (10%).

In chlorobenzene: A mixture of 286 mg of 1 (1 mmol) and 418 mg of 4-nitrobenzoic acid (2.5 mmol) was treated in 15 cm<sup>3</sup> of chlorobenzene as described in the general procedure. The resulting

crude product was chromatographed on a silica gel column with  $CHCl_3$ . The separation resulted in 27 mg of **3** (10%), 340 mg of **2b** (78%), and 28 mg of **1** (10%).

In *HMPT*: A mixture of 286 mg of **1** (1 mmol) and 418 mg of 4-nitrobenzoic acid (2.5 mmol) was treated in  $15 \text{ cm}^3$  of *HMPT* as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>. The separation resulted in 13 mg of **3** (5%), 270 mg of **2b** (62%), and 74 mg of **1** (26%).

#### Mitsunobu Esterification of 1 with 3,5-Dinitrobenzoic Acid

In toluene: A mixture of 286 mg of **1** (1 mmol) and 530 mg of 3,5-dinitrobenzoic acid (2.5 mmol) was treated in 15 cm<sup>3</sup> of toluene as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>. The separation resulted in 27 mg of **3** (10%). Continued elution yielded 389 mg of **2c** (81%), mp 174–175°C,  $R_f = 0.70$  (ss A);  $[\alpha]_D^{20} = -510^{-1} \text{ °cm}^2 \text{ g}^{-1}$  (c = 1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $Me_4\text{Si}$ ):  $\delta = 0.90$  (s, 18-H<sub>3</sub>), 1.30–2.50 (overlapping multiplets, 13H), 2.88 (m, 6-H<sub>2</sub>), 3.77 (s, 3-OCH<sub>3</sub>), 5.23 (d, J = 6.2 Hz, 17-H), 6.63 (d, J = 2.7 Hz, 4-H), 6.69 (dd, J = 8.6, 2.7 Hz, 2-H), 7.18 (d, J = 8.6 Hz, 1-H), 9.14 (d, J = 2.3 Hz, 2'- and 6'-H), 9.22 (t, J = 2.3 Hz, 4'-H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>,  $Me_4\text{Si}$ ):  $\delta = 16.7$  (C-18), 24.5, 26.1, 28.0, 29.8, 30.1, 32.4, 39.1 (C-8), 43.6 (C-9), 45.7 (C-13), 49.6 (C-14), 55.2 (3-OCH<sub>3</sub>), 85.2 (C-17), 111.5 (C-2), 113.8 (C-4), 122.2 (C-4'), 126.3 (C-1), 129.3 (2C, C-2' and C-6'), 132.1 (C-10), 134.4 (C-1'), 137.8 (C-5), 148.7 (2C, C-3' and C-5'), 157.5 (C-3), 162.1 (C=O) ppm. Further elution yielded 14 mg of **1** (5%).

In chlorobenzene: A mixture of 286 mg of 1 (1 mmol) and 530 mg of 3,5-dinitrobenzoic acid (2.5 mmol) was treated in 15 cm<sup>3</sup> of chlorobenzene as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>. The separation resulted in 27 mg of 3 (10%) and 404 mg of 2c (84%).

#### Mitsunobu Esterification of 1 with 2,4-Dinitrobenzoic Acid

In toluene: A mixture of 286 mg of **1** (1 mmol) and 530 mg of 2,4-dinitrobenzoic acid (2.5 mmol) was treated in 15 cm<sup>3</sup> of toluene as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>. The separation resulted in 8 mg of **3** (3%). Continued elution yielded 461 mg of **2d** (96%), mp 86–89°C,  $R_f$ =0.70 (ss A);  $[\alpha]_D^{20}$  = -77 10<sup>-1</sup> °cm<sup>2</sup> g<sup>-1</sup> (*c* = 1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, *Me*<sub>4</sub>Si):  $\delta$  = 0.85 (s, 18-H<sub>3</sub>), 1.35–2.40 (overlapping multiplets, 13H), 2.84 (m, 6-H<sub>2</sub>), 3.77 (s, 3-OCH<sub>3</sub>), 5.12 (d, *J* = 5.9 Hz, 17-H), 6.62 (d, *J* = 2.5 Hz, 4-H), 6.69 (dd, *J* = 8.6, 2.5 Hz, 2-H), 7.18 (d, *J* = 8.6 Hz, 1-H), 7.98 (d, *J* = 8.6 Hz, 6'-H), 8.52 (dd, *J* = 8.6, 2.2 Hz, 5'-H), 8.73 (d, *J* = 2.2 Hz, 3'-H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, *Me*<sub>4</sub>Si):  $\delta$  = 16.6 (C-18), 24.2, 26.1, 28.0, 29.7, 29.8, 31.8, 39.0 (C-8), 43.4 (C-9), 45.3 (C-13), 49.1 (C-14), 55.2 (3-OCH<sub>3</sub>), 86.0 (C-17), 111.5 (C-2), 113.8 (C-4), 119.5 (C-3'), 126.3 (C-1), 127.2 (C-5'), 131.5 (C-6'), 132.3 (C-10), 133.0 (C-1'), 137.9 (C-5), 148.4 and 148.9 (2C, C-2' and C-4'), 157.5 (C-3), 163.1 (C=O) ppm.

In chlorobenzene: A mixture of 286 mg of 1 (1 mmol) and 530 mg of 2,4-dinitrobenzoic acid (2.5 mmol) was treated in 15 cm<sup>3</sup> of chlorobenzene as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>, yielding 471 mg of 2d (98%).

In *HMPT*: A mixture of 286 mg of **1** (1 mmol) and 530 mg of 2,4-dinitrobenzoic acid (2.5 mmol) was treated in 15 cm<sup>3</sup> of *HMPT* as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>, yielding 355 mg of **2d** (74%) and 34 mg of **1** (12%).

#### Mitsunobu Esterification of 2 with 4-Nitrobenzoic Acid

In toluene: A mixture of 286 mg of 2 (1 mmol) and 418 mg of 4-nitrobenzoic acid (2.5 mmol) was treated in  $15 \text{ cm}^3$  of toluene as described in the general procedure. The resulting crude product was

chromatographed on a silica gel column with CHCl<sub>3</sub>. The separation resulted in 190 mg of **3** (71%). Continued elution yielded 52 mg of **1a** (12%), mp 159–162°C,  $R_f = 0.65$  (ss A);  $[\alpha]_D^{20} = +86 \ 10^{-1} \,^{\circ} \text{cm}^2 \text{g}^{-1}$  (c = 1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $Me_4\text{Si}$ ):  $\delta = 0.99$  (s, 18-H<sub>3</sub>), 1.30–2.50 (overlapping multiplets, 13H), 2.89 (m, 6-H<sub>2</sub>), 3.78 (s, 3-OCH<sub>3</sub>), 4.97 (m, 17-H), 6.64 (d, J = 2.7 Hz, 4-H), 6.71 (dd, J = 8.6, 2.7 Hz, 2-H), 7.20 (d, J = 8.6 Hz, 1-H), 8.21 (d, J = 8.8 Hz, 2'- and 6'-H), 8.29 (d, J = 8.8 Hz, 3'- and 5'-H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>,  $Me_4\text{Si}$ ):  $\delta = 12.4$  (C-18), 23.4, 26.2, 27.2, 27.7, 29.8, 37.0, 38.6 (C-8), 43.4 (C-13), 43.8 (C-9), 49.8 (C-14), 55.2 (3-OCH<sub>3</sub>), 84.3 (C-17), 111.5 (C-2), 113.8 (C-4), 123.5 (2C, C-3' and C-5'), 126.3 (C-1), 130.6 (2C, C-2' and C-6'), 132.3 (C-10), 136.1 (C-1'), 137.8 (C-5), 150.4 (C-4'), 157.5 (C-3), 164.6 (C=O) ppm. Further elution yielded 43 mg of unreacted **2** (15%).

In chlorobenzene: A mixture of 286 mg of **2** (1 mmol) and 418 mg of 4-nitrobenzoic acid (2.5 mmol) was treated in 15 cm<sup>3</sup> of chlorobenzene as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>, yielding 204 mg of **3** (76%), 52 mg of **1a** (12%), and 25 mg of **2** (9%).

#### Mitsunobu Reaction of 4 with 4-Nitrobenzoic Acid

A mixture of 300 mg of 4 (1 mmol) and 418 mg of 4-nitrobenzoic acid (2.5 mmol) was treated in 15 cm<sup>3</sup> of toluene as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>. The separation resulted in 42 mg of 7 (15%), mp 95–98°C,  $R_{\rm f} = 0.85$  (ss A);  $[\alpha]_{\rm D}^{20} = +86\,10^{-1}\,^{\circ}{\rm cm}^2{\rm g}^{-1}$  (c = 1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, Me<sub>4</sub>Si):  $\delta = 0.78$  (s, 18-H<sub>3</sub>), 1.73 (s, 16-CH<sub>3</sub>), 1.40–2.35 (overlapping multiplets, 11H), 2.87 (m, 6-H<sub>2</sub>), 3.77 (s, 3-OCH<sub>3</sub>), 5.48 (s, 17-H), 6.63 (d, J = 2.6 Hz, 4-H), 6.70 (dd, J = 8.6, 2.6 Hz, 2-H), 7.17 (d, J = 8.6 Hz, 1-H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>,  $Me_4$ Si):  $\delta = 17.3$  and 17.6 (C-18 and 16-CH<sub>3</sub>), 26.6, 28.0, 29.8, 36.3 (2C), 37.4 (C-8), 44.6 (C-9), 46.1 (C-13), 55.2 (3-OCH<sub>3</sub>), 56.0 (C-14), 111.3 (C-2), 113.8 (C-4), 126.0 (C-1), 133.2 (C-10), 137.3 (C-17), 138.0 (C-5), 139.4 (C-16), 157.4 (C-3) ppm. Further elution yielded 76 mg of **6a** (17%), mp 145–147°C,  $R_{\rm f} = 0.65$  (ss A);  $[\alpha]_{\rm D}^{20} = -4 \, 10^{-1} \, {}^{\circ} {\rm cm}^2 {\rm g}^{-1}$  $(c = 1, \text{CHCl}_3);$ <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $Me_4\text{Si}$ ):  $\delta = 0.94$  (s, 18-H<sub>3</sub>), 1.32 (d,  $J = 7.0 \text{ Hz}, 16\text{-CH}_3$ ), 1.10-2.40 (overlapping multiplets, 12H), 2.88 (m, 6-H<sub>2</sub>), 3.78 (s, 3-OCH<sub>3</sub>), 4.77 (s, 17-H), 6.64 (d, J = 2.7 Hz, 4-H), 6.71 (dd, J = 8.6, 2.7 Hz, 2-H), 7.19 (d, J = 8.6 Hz, 1-H), 8.22 (d, J = 8.8 Hz, 2'- and 6'-H), 8.30 (d, J = 8.8 Hz, 3'- and 5'-H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>,  $Me_4$ Si):  $\delta = 17.4$  (C-18), 20.8 (16-CH<sub>3</sub>), 25.9, 28.0, 29.9, 32.7, 34.4, 38.8 (C-8), 41.2 (C-16), 43.5 (C-9), 45.3 (C-13), 51.0 (C-14), 55.2 (3-OCH<sub>3</sub>), 90.4 (C-17), 111.5 (C-2), 113.8 (C-4), 123.6 (2C, C-3' and C-5'), 126.3 (C-1), 130.6 (2C, C-2' and C-6'), 132.3 (C-10), 136.2 (C-1'), 137.9 (C-5), 150.4 (C-4'), 157.5 (C-3), 164.4 (C=O) ppm. Further elution resulted in 195 mg of 4 (65%).

#### 3-Methoxy-16 $\beta$ -methylestra-1,3,5(10)-trien-17 $\alpha$ -ol (6)

Compound **6a** (45 mg, 0.1 mmol) was dissolved in 5 cm<sup>3</sup> of methanol containing 10 mg of NaOCH<sub>3</sub> (0.184 mmol) and the solution was refluxed for 1 h, than diluted with 20 cm<sup>3</sup> of H<sub>2</sub>O and extracted with  $3 \times 10$  cm<sup>3</sup> of CH<sub>2</sub>Cl<sub>2</sub>. The CH<sub>2</sub>Cl<sub>2</sub> solution was washed with H<sub>2</sub>O, dried, and evaporated. The residual oil was chromatographed on a silica gel column with a mixture of ethyl acetate/CHCl<sub>3</sub> (5/95). The product was crystallized from CHCl<sub>3</sub>/petrolether. This yielded 31 mg of **6** (70%), mp 52–54°C (Ref. [18] 53–56°C),  $R_{\rm f} = 0.40$  (ss B);  $[\alpha]_{\rm D}^{20} = +60 \, 10^{-1} \, {}^{\circ}{\rm cm}^2 \, {\rm g}^{-1}$  (c = 1, CHCl<sub>3</sub>).

#### Mitsunobu Reaction of 5 with 4-Nitrobenzoic Acid

A mixture of 300 mg of 5 (1 mmol) and 418 mg of 4-nitrobenzoic acid (2.5 mmol) was treated in  $15 \text{ cm}^3$  of toluene as described in the general procedure. The resulting crude product was chromatographed on a silica gel column with CHCl<sub>3</sub>. The separation resulted in 42 mg of 7 (15%). Continued

elution yielded 270 mg of **8a** (60%), mp 161–163°C,  $R_f = 0.70$  (ss A);  $[\alpha]_D^{20} = +1310^{-1} \circ \text{cm}^2 \text{g}^{-1}$  (c = 1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>,  $Me_4\text{Si}$ ):  $\delta = 0.94$  (s, 18-H<sub>3</sub>), 1.02 (d, J = 7.2 Hz, 16-CH<sub>3</sub>), 1.40–2.40 (overlapping multiplets, 11H), 2.71 (m, 1H), 2.88 (m, 6-H<sub>2</sub>), 3.77 (s, 3-OCH<sub>3</sub>), 5.22 (d, J = 5.8 Hz, 17-H), 6.64 (d, J = 2.6 Hz, 4-H), 6.70 (dd, J = 8.6, 2.6 Hz, 2-H), 7.17 (d, J = 8.6 Hz, 1-H), 8.24 (d, J = 8.8 Hz, 2'- and 6'-H), 8.31 (d, J = 8.8 Hz, 3'- and 5'-H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>,  $Me_4\text{Si}$ ):  $\delta = 16.0$  (C-18), 17.2 (16-CH<sub>3</sub>), 26.0, 28.0, 29.9, 32.3, 33.5, 34.3 (C-16), 39.0 (C-8), 43.7 (C-9), 46.7 (C-13), 48.8 (C-14), 55.2 (3-OCH<sub>3</sub>), 85.3 (C-17), 111.5 (C-2), 113.8 (C-4), 123.6 (2C, C-3' and C-5'), 126.3 (C-1), 130.6 (2C, C-2' and C-6'), 132.3 (C-10), 135.9 (C-1'), 137.8 (C-5), 150.5 (C-4'), 157.5 (C-3), 164.3 (C=O) ppm. Further elution resulted in 63 mg of unreacted **5** (21%).

#### 3-Methoxy-16 $\alpha$ -methylestra-1,3,5(10)-trien-17 $\alpha$ -ol (8)

Compound **8a** (90 mg, 0.2 mmol) was dissolved in 10 cm<sup>3</sup> of *Me*OH containing 15 mg of NaOCH<sub>3</sub> (0.276 mmol) and the solution was refluxed for 1 h, then diluted with 30 cm<sup>3</sup> of H<sub>2</sub>O and extracted with  $3 \times 15$  cm<sup>3</sup> of CH<sub>2</sub>Cl<sub>2</sub>. The CH<sub>2</sub>Cl<sub>2</sub> solution was washed with H<sub>2</sub>O, dried, and evaporated. The resulting crude product was chromatographed on a silica gel column with a mixture of ethyl acetate/CHCl<sub>3</sub> (5/95). The product was crystallized from CHCl<sub>3</sub>/petrolether, yielding 44 mg of **8** (73%), mp 126–127°C (Ref. [18] 125–127°C),  $R_{\rm f} = 0.55$  (ss B).

#### Acknowledgements

We thank the Hungarian Scientific Research Fund (OTKA T042673) for financial support of this work. We also thank Dr. *M. Rózsa-Tarjáni* (University of Szeged, Hungary) for the NMR spectra.

### References

- [1] Mitsunobu O, Yamada M (1967) Bull Chem Soc Japan 40: 2380
- [2] Mitsunobu O, Eguchi M (1971) Bull Chem Soc Japan 44: 3427
- [3] Mitsunobu O (1981) Synthesis 1
- [4] Brandstetter HH, Zbiral E (1978) Helv Chim Acta 61: 1832
- [5] Mitsunobu O, Kimura J, Fujisawa Y (1972) Bull Chem Soc Japan 45: 245
- [6] Jarosz S, Glodek J, Zamojski A (1987) Carbohydr Res 163: 289
- [7] Simon C, Hosztafi S, Makleit S (1997) J Heterocyclic Chem 34: 349
- [8] Eaton PE, Jobe PG, Reingold ID (1984) J Am Chem Soc 106: 6437
- [9] Kocienski PJ, Street SDA, Yeates C, Campbell SF (1987) J Chem Soc Perkin Trans 1: 2171
- [10] Mori K, Ikunama I (1984) Tetrahedron 40: 3471
- [11] Mori K, Otsuka T, Oda M (1984) Tetrahedron 40: 2929
- [12] Martin SF, Dodge JA (1991) Tetrahedron 32: 3017
- [13] Dodge JA, Trujillo JI, Presnell M (1994) J Org Chem 59: 234
- [14] Dodge JA, Lugar CW (1996) Bioorg Med Chem Lett 6: 1
- [15] Johns WF (1961) J Org Chem 26: 4583
- [16] Schneider Gy, Hackler L, Sohár P (1988) Liebigs Ann Chem 679
- [17] Evans PA, Nelson JD, Rheinhold AL (1997) Tetrahedron Lett 38: 2235
- [18] Meskó E, Schneider Gy, Dombi Gy, Zeigan D (1990) Liebigs Ann Chem 419